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Abstract—Much like how sentient beings use multiple senses,
Multimodal Machine Learning (MML) uses multiple input signals
to form an estimation about the environment. An advantage
MML has over standard Unimodal Learning is that if one input
becomes corrupt or unavailable, a multimodal recognition model
can rely on the other inputs by zeroing out the corrupt or
missing one. As such, MML can become more robust and fault-
tolerant. Unfortunately, it is not always known when an input
has become corrupt or not. Corrupt inputs are anomalous in
comparison to normal and expected data. We use an immune
inspired algorithm, the Negative Selection Algorithm (NSA) as
a resilient anomaly detection algorithm. Using the multimodal
Smart Gym “MM-FIT” dataset, we evaluate how corrupt inputs
affect the accuracy of MML classification. We implement the
NSA specifically for a multimodal pipeline of activity recognition
with anomaly detection. The results indicate that our recognition
pipeline is effective in introducing fault-tolerance to MML.

Index Terms—Multimodal Machine Learning, Negative Selec-
tion Algorithm, Fault Tolerance, Anomaly Detection, Human
Activity Recognition

I. INTRODUCTION

Sensor data is prone to errors due to irregular behaviour
of the hardware, interference and data acquisition glitches.
These unexpected events alter the signal in a small or more
substantial proportion, which may have severe consequences
for critical applications. We refer to these events as anomalies
of the sensor signal.

Tackling anomalies of sensor data is not simple. Chandola
et al. [1] define anomalies as “patterns in data that do not
conform to what is expected”. We see anomalies as transfor-
mations of data that could lead to mis-classifications, or having
a detrimental effect on the training in Multimodal Machine
Learning (MML). MML uses multiple modalities (sensors) to
solve a task, e.g. activity recognition. Any system collecting
data from multiple senses offers the opportunity to incorporate
fault-tolerance. If one or more sensor signals are affected by
noise, or other corruptions, the rest of the stable sensors may
still hold enough information to conclude the recognition task
without being affected by the corrupted ones.

To investigate fault-tolerance in MML via anomaly detec-
tion, this paper uses the MM-FIT Smart Gym dataset [18]. We
implement an immune inspired Negative Selection Algorithm
(NSA). This has been previously explored by Forrest et al. [4]
and Dasgupta et al. [3]. We use the NSA algorithm for
detecting corrupted signals across sensing modalities and then
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Fig. 1. The recognition system based on Multimodal Neural Networks detects
the anomalous data inputs first and then it “zeros-out” the faulty inputs before
they can corrupt the recognition task. This example shows a possible situation
where the sensing modality from the earbud is rejected because of anomaly
detection while the remaining modalities (camera, phone and watch) continue
to provide inputs for the activity recognition task.

zero them out if deemed anomalous, to enhance fault-tolerance
and increase the robustness of our recognition system.

MM-FIT [18] is a multimodal dataset, capturing inertial sig-
nals from different wearable devices during physical exercise
activity. These devices are time-synchronised and capture the
entire body movement due to their different locations on the
human body. The sensor signals are fed into multiple autoen-
coders and a Convolutional Neural Network [14] to classify
the type of exercise (e.g. squats), the user is performing during
the workout. The baseline is produced with a multimodal deep
neural network [15]. Besides activity recognition, this dataset
offers annotations for counting the number of repetitions of
an exercise, while also classifying the rest periods as non-
exercise. This task and dataset provide the best testbed for
our proposed algorithm of anomaly detection in multimodal
sensor signals.

The Negative Selection Algorithm (NSA) is inspired by
the negative selection of T cells in the biological immune
system [17]. The premise of this algorithm is that normal data
from the training set lead to creating a collection of “self” and
generate a set of detectors that sense the “non-self”. Anomaly
detection is learned by simply “censoring” the detectors until
none of them sense the “self”, similar to the behaviour of
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Fig. 2. The NSA algorithm in action, representing the self points with green
color, surrounded by detectors with red color. In this case, each self point
represents the earbud data of one workout.

the immune system. A “monitoring” phase follows where any
anomalous data will be detected. This has been used by Forrest
et al. [4] to create an intrusion detection system with benefits
to computer security. Early work on designing an NSA for
real-valued data with “detector spheres” has been performed
by Gonzalez et al. [6], and then further improved with spheres
of a variable radius by Dasgupta et al. [3]. Figure 2 presents
a 3D representation of an iteration of NSA. The red spheres
are the immune cells that detect anomalies, the green spheres
are the accepted signal values and the small blue spheres
are anomalies that have managed to escape the view of the
detectors. This is a stochastic algorithm, which comes with
several good properties when assessing the quality of the
estimation.

We adapt NSA to convert the self data into multi-
dimensional real-valued points in Euclidean space and then
generate a set of multi-dimensional hyperspheres to detect the
non-self.

Our evaluation shows that fault-tolerance can be built into
Multimodal Learning with the help of an immune system in-
spired anomaly detection algorithm (Negative Selection Algo-
rithms). This shows good performance on the MM-Fit dataset,
identifying anomalies with high confidence and enhancing
robust recognition based on anomaly filtering.

The remainder of this paper is organised as follows. Sec-
tion II provides a literature review on the concepts used
throughout this work, such as multimodal deep learning and
Negative Selection Algorithms (NSA). This is followed by an
introduction to the project requirements III. The system design
is presented in Section IV, with its preliminary evaluation in
Section V. The experiment results are discussed in Section VI
and conclusions are presented in Section VII.

II. LITERATURE REVIEW

A. Multimodal Learning

Multimodal learning is an expanding area of research, com-
bining several input signals for robust estimations. Strömbäck
et al. [18] propose MM-Fit, a solution based on deep neural

Fig. 3. The complexity of data preprocessing by performing skeleton
extraction from raw images.

networks to combine the various sensing modalities of wear-
able devices and camera for estimating the user physical ex-
ercise. This is a form of Human Activity Recognition (HAR).
Inertial signals are collected with diverse devices: an earbud
(eb l), two smartwatches (sw l, sw r) and a smartphone in the
right pocket (sp r), exploiting their gyroscope and accelerom-
eter sensors. A video camera creates a 3d pose skeleton of
the user (fig 3). This data is then processed and combined to
create an optimal input for a Convolutional Neural Network.
This model accomplishes a maximum accuracy of 96% and
comes with its own data set1. The data set consists of over
800 minutes of multimodal data from 5 devices built from 20
workouts (of 10 different exercises) across 10 participants.

Similar to [18], Ma et al. [10] uses skeletal data to perform
HAR on stroke patients to assess rehabilitation exercises. With
this Unimodal approach, [10] achieves 90.9% accuracy on
simulated videos. Perhaps this could be increased using MML.

Ordóñez et al. [13] displays a great representation of mul-
timodality. This paper uses MML for the same task as the
MM-FIT model, HAR. This paper has yielded a total of a
35% increase in accuracy over unimodal learning by fusing
multiple streams of data input. The Human Activity in question
is focused on the actions of assembly line workers in a Skoda
car factory. They perform many identifiable actions such as
opening car doors. This data set is similar to the MM-FIT
data set in many ways yet they have their distinct differences,
this paper has used more body sensors than the Smart Gym
but lacks a camera/skeleton modal. There does not appear to
be any attention to what happens if faults occur within the
sensors.

B. Artificial Immune Systems

Forrest et al. [4] are the creators of the Negative Selection
Algorithm (NSA). This is inspired by negative selection in
biological T cells. [4] uses this inspiration to form an antivirus
algorithm that uses computer data to represent the self so that
a suitable set of detectors can be generated to find anomalies.
The results show how powerful NSA’s can be, the only

1https://mmfit.github.io
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drawback found was computational difficulty in generating
the detectors. Our paper aims to compose an algorithm that
generates a satisfactory set of detectors within a practical time
frame.

Dasgupta et al. [3] uses a NASA flight simulator to test
aircraft fault detection with a real-valued NSA. The difference
between a real-valued NSA is that a hyperdimensional Eu-
clidean space is used where the self are points and the detectors
are hyperspheres, detection occurs if a point lies within a
detector. The algorithm used involves ensuring detectors don’t
overlap with each other, moving the detectors in many ways
based on what condition they are in and cloning the best whilst
also adding random generation of new detectors each iteration.
The algorithm terminates when enough of the non-self space
is filled. Complicated faults (such as a “Tail 1” failure) are
simulated and tested.

Forrest and Dasgupta have worked together to create a
tool breakage detection system [2]. The system is successful
but required a large data set to generate the self so that the
detectors generated would correctly cover enough of the non-
self space. Tool breakage detection is not too dissimilar from
detecting device faults so we can learn from this paper. The
main concern found was that the NSA wouldn’t specifically
detect any particular faults, it would just detect what wasn’t
normal.

C. Other Anomaly Detection Methods

Jayakumar et al. [8] uses Deep Generalized Canonical
Correlation Analysis to detect anomalies on an earlier ver-
sion of MM-FIT. This thesis provides robust experiments
and shows that anomaly detection for MML is an area to
be explored. Multiple Gaussian mixtures of various signal
to noise ratios are added to simulate realistic corruptions.
Classification accuracy of the Smart Gym decreased as noise
was added. The experiments done in our paper differ from
this thesis so it is difficult to correlate the two but evaluating
both methods of anomaly detection and seeing if it’s possible
to combine them could lead to discoveries that move MML
forward.

Tadepalli et al. [19] uses machine learning to detect near-
native protein structures. These structures are anomalous com-
pared to other protein structures so [19] converts the task of
supervised learning into anomaly detection. A large data set
is used and finding the near-native structures is like finding “a
needle in a haystack”. Fortunately in our paper, the anomalies
are artificially generated so testing the model is not limited by
the data set but unfortunately this comes at the cost of a less
realistic test environment.

III. REQUIREMENTS AND ANALYSIS

A. Requirements

The goal of this paper is to further the fault-tolerance of
MML for HAR. This shall be done by artificially corrupting
test input data of one of the sensors and seeing if it is possible
to reduce the impact of this corruption. A real-valued NSA will
be implemented to detect the corruption and take subsequent
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Fig. 4. The impact of noise scale applied to the modalities belonging to one
device onto the accuracy of performing the activity recognition. Accuracy
decreases as scale (standard deviation) of noise increases on a single workout.
Some devices (Smartwatch left/sw l) are more robust.

action. Evaluation will be done in two ways: testing with
and without the MM-FIT model. Tests completed outside of
the model will show the detection rate and the best hyper
parameters for the NSA whilst tests done within the MM-FIT
model will show the improvement made when the NSA is
implemented.

B. Analysis

To assess the robustness of MM-FIT, an experiment was
run by artificially corrupting the input data of each device
and observing the classification accuracy (Fig. 4). There is a
negative correlation between accuracy and the scale of noise
added, for each device. It is also important to test for false-
positives but unfortunately, it is assumed that the test data set
contains natural anomalies. Much like how regional accents
[20] are not picked up by voice recognition2, perhaps different
people work out in different ways ergo natural outliers in the
workout data. These natural anomalies do not affect MM-FIT’s
classification accuracy (including on unseen test subjects) but
to avoid false detections, the NSA requires more steps to
accommodate the complexities of the data set used.

To complete this analysis, the requirements of success for
this paper are to evaluate an MM-FIT model such that as
noise is added to any input device, the classification accuracy
does not decrease. Computational efficiency and reduction in
complexity is desirable. Another measure of success is to
create an NSA with a substantial anomaly detection rate and
a minor false positive rate but as discovered in this paper, a
seemingly less than adequate NSA can succeed.

IV. DESIGN

The algorithm designed here is a “kissing NSA”. This is
because the radii of the detectors are made to be close to

2Unless the task is to recognise accents [7]
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their nearest self point. This gives the algorithm a greedy
nature. The idea of “kissing spheres” is loosely inspired by the
“kissing number problem” famously debated between Newton
and Gregory [11].

A. Design

The design of our Negative Selection Algorithm is a real-
valued NSA in one of its primary forms. It is simpler than [3].
It involves a training stage3 to set up the m-sphere detectors
and a testing stage which is used to detect anomalies. Principle
Component Analysis (PCA) [21] is applied to the training data
to reduce to m dimensions.

Training:

∀R ∈ R′ :

Rc = random(m,B)

loop :

nS = nearest(Rc, S
′)

Rr = D(Rc, nSc)− nSr − k

Rc = Tr(Rc, Rr) if ∃S ∈ S′ → D(Rc, Sc) < Rr + Sr

R = ∅ if D(Rc, Bc) > Br

go to loop if (∃S ∈ S′ → D(Rc, Sc) < Rr + Sr) ∧ (R 6= ∅)

Testing:
For any potential anomaly x, return:

true if (∃R ∈ R′ → D(Rc, x) < Rr) ∨ (D(Bc, x) > Br)
false otherwise

Fig. 5. The formulation of the algorithm. This includes the generation of the
set of detectors R′ and the anomaly detection phase.

Each of these m dimensional points is given a radius to
create the self space. A boundary sphere is created from
the mean centre with a radius double the furthest self point
from the centre. A number (nR0) of detectors are randomly
generated, their radii are made to kiss the nearest self point.
[3] uses a similar calculation of detector radius. The reason
detectors do not meet the tangent of the self point is because
there is concern this may cause the detectors to overfit. This
could be seen as a greedy algorithm because the detectors
try to fill as much of the non-self space as possible whilst
not being so large that they cause false-positive detections.
Any detectors that intersect with the self space are moved in

3As far as NSA’s are concerned, “training and testing” are interchangeable
with “censoring and monitoring”. It is uncertain which phrases are more
popular. The author prefers “training and testing” because it can be compared
to the equivalent stages in Machine Learning.

nR0 number of initial detectors
R’ set of (initially nR0) detector m-spheres
S’ set of self m-spheres derived from data
B the boundary m-sphere
r radius
c centre
m number of dimensions
k kissing distance
x a potential anomaly (any m-dimensional point)
D distance
Tr random translation

Fig. 6. The keys for Fig 5. The parameters Sr and k are set to 10 in our
evaluation.

a random direction a distance equal to their radius. Out of
bounds detectors are returned to the centre which ends up in
them having a radius of zero and rendering them “deleted”4.
Once all detectors are in bounds and do not intersect with the
self space they are considered “censored”. Now testing can
occur. The potential anomaly goes through the same PCA as
the training data. If this transformed piece of data lies within a
detector or out of bounds it is considered an anomaly and if it
does not it is considered to be part of the self space. Euclidean
distance is used to measure how far points are from each other.

B. Finding the Best Hyper Parameters

To find the best hyperparameters, a test was conducted (Fig
9). The number of dimensions is important, too little and
there isn’t space for detectors to fit in, too many and the data
becomes too sparse5. An optimal value of 4 dimensions was
found. As the number of initial detectors increases so does the
detection rate but this does reach an asymptote at nR0 = 100.
Even with 0 detectors, there is a detection rate of ≈ 18%.
This is due to the boundary sphere. These values were found
by artificially adding noise to all workouts to create a test set
containing only anomalies. The detection rate is the percentage
of anomalies detected by the immune system.

C. Design Extensions

This algorithm is simple so it has many areas open to
improvement. The NSA takes an entire workout session as
an input but if say, 5 second samples were used, the NSA
could act as an alert system for faults in the senses but in
such cases safer and better tested algorithms exist [2], [3].
There are many extensions such as comparing the distance
of a test point from its nearest self point and detector if it
lies in neither [5] or a more rigid selection process could be
used [3]. It is possible for detectors to overlap with each other
and waste space, especially given the fact that only a limited
number of detectors are generated. [3] accommodates this by
moving overlapping detectors but this adds run-time complex-
ity. Following the greedy nature of our algorithm, overlapping

4This causes the set of detectors to have many empty sets which is not
efficient in regards to computational memory.

5There exists algorithms tailored for high-dimensional sparse data [9]
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Fig. 9. How number of dimensions and detectors affects detection rate. These
tests were done on separate noisy test sets, both of noise scale 5

detectors are accepted. Our algorithm only involves spheres,
but some methods use ellipsoids [16].

D. Summary

The algorithm will take each workout and transform it into
a self point of 4 dimensions via PCA. A boundary sphere will
be created. 100 detector spheres of random location will be
generated. These detectors will then be trained to ensure that
1: no self point lies within a detector and 2: no detector lies
outside of the boundary sphere. This is done by “deleting” any
out of bounds detectors and translating self detecting spheres
in a random direction the magnitude of their radius and then
updating their radius to kiss the nearest self point. Any workout
being tested will go through the same PCA as the training data
to produce a 4-dimensional point. If this point lies within a
detector it is classified as anomalous.

V. IMPLEMENTATION AND TESTING

A. Implementation

To convert the input workout data into self points, the
magnitude of the XYZ values of each sample are treated as
feature s and then PCA is applied to reduce dimensionality.
For this case, all the workouts were used (including test and
validation sets) as NSA training data. This is because the

Fig. 10. Adding noise of scale (standard deviation) 3 to a workout modality.
Clean above, corrupt below.
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Fig. 11. How scale of noise affects detection rate for each modality. The
accelerometer plots are always lower than the gyroscope.

workout data set contains natural anomalies which cause false-
positive detections if they are not included. It is assumed that
using a larger training data set would decrease these natural
anomalies and allow a more robust anomaly detection [2].
An MM-FIT model was trained on all modalities with the
standard training and validation set. Two test sets were used,
one single workout (to present an example of the NSA in use)
and one larger test set with multiple workouts (for reliability).
Evaluation on the single test set yielded an accuracy of 87%
and the full test set achieved 84% The 3d pose data is
very different from the gyroscope and accelerometer data so
although it has been included in all tests it has not had noise
added to it nor has an immune system been created for it. To
see the influence of the 3d pose data, a test was done with
only the 3d pose modality which resulted in a test accuracy
of 36%.

B. Testing
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1) Outside MM-FIT: These tests were used to find the
detection rate of the NSA for each modality and to find the
best hyperparameters (as mentioned in chapter IV-B). These
tests involved producing a self space from all the workout
data for each modality and generating an immune system for
each. To find the detection rate noise is added to each workout
to form a noisy test set and the percentage of this noise set
detected became the detection rate. Each test was repeated
10 times and the mean was calculated. Figure 11 provides an
example of how different types of data perform differently.
The detection rate of the accelerometer component of each
device is significantly lower. This test was done by creating a
corrupt workout data set using all workouts. It is perplexing to
see how low the detection rate is in comparison to the success
when implemented to the MM-FIT model. Fault tolerance is
observed from scale 2 but this would seemingly be with a
detection rate of up to 40%. It is likely that the unseen test
subjects set has a higher affinity to anomalies.

2) Within MM-FIT: 5 different scales (standard deviations)
of Gaussian normal noise were added to each device in turn.
Upon observing the change in data in Fig. 10, it is assumed
that corruptions with a noise scale above 3 are rarer. Both
gyroscope and accelerometer data of the devices could become
corrupted, we have corrupted both at the same time to simulate
a total device failure. A unique immune system was generated
for each modality and each using 4 dimensions and 100 initial
detectors. A different set of immune systems were generated
for each experiment. If the immune system detected the noise
it would zero out the faulty modality so no noisy input would
enter the MML model.

VI. RESULTS AND DISCUSSION

The results are a success: MM-FIT is more fault-tolerant
when the NSA is implemented.
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Fig. 12. Mean classification accuracy with and without the immune system on
a single workout. The model is more fault-tolerant with the immune system
fault detection activated.

When reviewing how the MM-FIT model performs without
the immune system (Fig 12), it is hard to ignore how robust
the MM-FIT model is to noise (only a 6% decrease in

TABLE I
CLASSIFICATION ACCURACY OVER 5 SCALES OF NOISE.

0 1 2 3 4 5
ebl 86.75 85.28 89.14 88.75 88.36 87.47
swl 86.75 86.68 86.76 86.26 86.08 80.94
swr 86.75 85.34 86.69 86.58 86.25 85.63
spr 86.75 86.80 85.29 82.10 79.37 84.08

accuracy with the largest scale of noise). As it stands, the
MM-FIT model is more fault-tolerant with the immune system
implemented.

In the single workout experiment (Table I) there is less of a
negative correlation between accuracy and noise. The values in
bold show fault-tolerance achieved with the NSA. The impact
implementing the NSA had on run-time was found to be
negligible. The smartphone modality (sp r) does decline until
the 4th scale, this could be because the data is too complicated
for the immune systems to detect but once the noise is so great
it exits the boundary sphere and becomes detected. The earbud
modality (eb l) increases because the earbud input naturally
corrupts the model as a whole so once it is zeroed out the
model performs better. In all of these tests, only the gyroscope
modalities were detected apart from one case where sw l acc
was detected on the 5th scale of noise and the classification
accuracy of the MM-FIT model decreased. This is because the
model is reliant on the accelerometer data so that although it
is noisy it is still useful for classifying the correct workout.
This also highlights how the data input to the Multimodal
model is important. Since removing the earbud input increases
accuracy, it might be the case that the optimal input for the
workout tested does not include the earbud data. Finding which
configuration of inputs regardless if they are corrupt or not
could improve the results.

Part of the MM-FIT model training process practices with
modalities zeroed out. The intention for this is so that the
model can perform well if one of the sensing devices are
not available during a workout but coincidentally this is
perfect because it means that if a modality has to be zeroed
out due to noise the model has already been trained with
fewer modalities. Strömbäck et al. [18] discovered that the
earbud and smartphone are the less discriminative modalities.
This could explain why the model’s classification accuracy
increases when the earbud data is detected and zeroed out, it
simply provides no useful input for this workout. When testing
with the larger data set, each device improved when the NSA
was implemented.

A. How to Reproduce the Results

To reproduce the results for the larger test set, one must
set up the MM-FIT environment with the data set [18]. Then
the Python (Pytorch and Scikit) code6 used for generating the
immune systems must be replicated for each modality. An
MM-FIT model must be trained with the default parameters
but only up to 5 epochs. The example training set, validation

6Starter code: https://github.com/Mattias421/nsa-multimodal-machine-
learning.git
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set and unseen test subjects are selected (resulting in a ≈ 55 :
17 : 28 split). For each experiment (i.e. device test) a new
set of immune systems must be generated. The self space was
generated by using all workouts. Each immune system must
be 4 dimensional with an initial set of 100 detectors. When
testing a device, a Gaussian normal distribution must be added
to both the gyroscope and accelerometer components of the
device data. The scale/standard deviation of the Gaussian will
start at zero and iterate to 5 in increments of 1. As the MM-FIT
model is being evaluated the input test data will pass through
its prescribed immune system. If the immune system believes
it has detected an anomaly the input for that modality will be
zeroed out and standard MM-FIT evaluation shall commence
and the classification accuracy will be presented. For the single
workout test, workout “00” was used.

VII. CONCLUSIONS AND FUTURE WORK

Multimodal Machine Learning (MML) has proven to be an
effective solution for Human Activity Recognition. Although
deep neural networks are inherently robust to noise, we
show how fault-tolerance can be enhanced further with an
immune inspired Negative Selection Algorithm (NSA). We
implemented this algorithm and specialised it for our task, to
detect faults in HAR sensor data. Our prediction pipeline uses
the anomaly detection to zero-out the detected faulty inputs
and prevent them from corrupting the prediction. Although
the NSA may be a greedy algorithm, it is a computationally
efficient method of detecting anomalies. The algorithm’s low
run-time has many benefits, Ngo et al. [12] showing that
anomaly detection algorithms can be used on small computing
devices.

Future work
A larger test set will give insights into how different users

work out and how false-positives could be decreased.
This paper only considers the MM-FIT HAR model, how-

ever, other multimodal datasets and tasks exist in the commu-
nity and we will explore the generalisation of our proposed
solution to many of them.
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